4.6 Article

Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism

期刊

CLINICAL CHEMISTRY AND LABORATORY MEDICINE
卷 51, 期 8, 页码 1643-1650

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/cclm-2012-0694

关键词

cardiovascular disease; folate; homocysteine; intracellular concentrations; S-adenosylmethionine

资金

  1. Unilever, Rotterdam, The Netherlands

向作者/读者索取更多资源

Background: In randomized trails, folic acid (FA) lowered plasma homocysteine, but failed to reduce cardiovascular risk. We hypothesize this is due to a discrepancy between plasma and intracellular effects of FA. Methods: In a double-blind trial, 50 volunteers were randomized to received 500 mu g FA daily for 8 weeks, or placebo. Plasma and peripheral blood mononuclear cell (PBMC) concentrations of homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine, methionine, cystathionine and 5-methyltetrahydrofolate (bioactive folate) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). PBMCs were used as a cellular model since they display the full spectrum of one-carbon (1C) enzymes and reactions. Results: At baseline, plasma concentrations were a poor reflection of intracellular concentrations for most 1C metabolites, except 5-methyltetrahydrofolate (R=0.33, p=0.02), homocysteine (Hcy) (R=0.35, p=0.01), and cystathionine (R=0.45, p=0.001). FA significantly lowered plasma homocysteine (p=0.00), but failed to lower intracellular homocysteine or change the concentrations of any of the other PBMC 1C metabolites. At baseline, PBMC homocysteine concentrations correlated to PBMC SAM. After FA supplementation, PBMC homocysteine no longer correlated with PBMC SAM, suggesting a loss of SAM's regulatory function. In vitro experiments in lymphoblasts confirmed that at higher folate substrate concentrations, physiological concentrations of SAM no longer effectively inhibit the key regulatory enzyme methylenetetrahydrofolate reductase (MTHFR). Conclusions: FA supplementation does not reduce intracellular concentrations of Hcy or any of its closely related substances. Rather, FA may disturb physiological regulation of intracellular 1C metabolism by interfering with SAM's inhibitory effect on MTHFR activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据