4.7 Article

Livin Contributes to Tumor Hypoxia-Induced Resistance to Cytotoxic Therapies in Glioblastoma Multiforme

期刊

CLINICAL CANCER RESEARCH
卷 21, 期 2, 页码 460-470

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-14-0618

关键词

-

类别

资金

  1. National Science Council of the Republic of China [102-2314-B-039-029-MY3]
  2. China Medical University [CMU103-BC-6]

向作者/读者索取更多资源

Purpose: Tumor hypoxia is one of the crucial microenvironments to promote therapy resistance (TR) in glioblastoma multiforme (GBM). Livin, a member of the family of inhibitor of apoptosis proteins, contributes antiapoptosis. However, the role of tumor hypoxia in Livin regulation and its impact on TR are unclear. Experimental Design: Livin expression and apoptosis for tumor hypoxic cells derived from human glioblastoma xenografts or in vitro hypoxic stress-treated glioblastoma cells were determined by Western blotting, immunofluorescence imaging, and annexin V staining assay. The mechanism of hypoxia-induced Livin induction was investigated by chromatin immunoprecipitation assay and reporter assay. Genetic and pharmacologic manipulation of Livin was utilized to investigate the role of Livin on tumor hypoxia-induced TR in vitro or in viva. Results: The upregulation of Livin expression and down-regulation of caspase activity were observed under cycling and chronic hypoxia in glioblastoma cells and xenografts, concomitant with increased TR to ionizing radiation and temozolomide. However, knockdown of Livin inhibited these effects. Moreover, hypoxia activated Livin transcription through the binding of hypoxia-inducible factor-1 alpha to the Livin promoter. The targeted inhibition of Livin by the cell-permeable peptide (TAT-Lp15) in intracerebral glioblastoma-bearing mice demonstrated a synergistic suppression of tumor growth and increased the survival rate in standard-of- care treatment with radiation plus temozolomide. Conclusions: These findings indicate a novel pathway that links upregulation of Livin to tumor hypoxia-induced TR in GBM and suggest that targeting Livin using cell-permeable peptide may be an effective therapeutic strategy for tumor microenvironment-induced TR. (C) 2014 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据