4.7 Article

Silicon Photonic Switch Fabrics in Computer Communications Systems

期刊

JOURNAL OF LIGHTWAVE TECHNOLOGY
卷 33, 期 4, 页码 768-777

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JLT.2014.2371616

关键词

Multiprocessor interconnection networks; optical switch; silicon photonics

资金

  1. Defense Advanced Research Projects Agency
  2. Army Research Laboratory [W911NF-12-2-0051]

向作者/读者索取更多资源

We discuss silicon photonic switch fabric designs that target data-intensive computing networks, reviewing recent results, and projecting future performance goals. We analyze the achievements of demonstrated hardware in terms of switching time, footprint, crosstalk, and power consumption, concluding that the most crucial metric to improve upon is net loss. We propose integrating semiconductor optical amplifiers into the switch fabric using either flip-chip or wafer-bonding technology, and investigate its potential merits alongside several challenges in implementation. Furthermore, we explore the dominant causes of crosstalk, and discuss manners for reducing it. We perform switch simulations that project a 7-dB reduction in crosstalk, when using a push-pull, rather than a single-ended phase shifter drive scheme. We also evaluate crosstalk effects on transmission performance using a full-link model that incorporates multiple crosstalk-accumulating photonic switch hops. The study demonstrates the degree to which crosstalk may degrade signal integrity after just a few occurrences. Finally, a comparison of four topologies highlights tradeoffs in physical-layer design and scheduling complexity, illustrating the scales that may be accomplished with the simplest topologies, and the device improvements required to achieve the more robust architectures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据