4.7 Article

ETS2 Mediated Tumor Suppressive Function and MET Oncogene Inhibition in Human Non-Small Cell Lung Cancer

期刊

CLINICAL CANCER RESEARCH
卷 19, 期 13, 页码 3383-3395

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-13-0341

关键词

-

类别

资金

  1. Lung Cancer Research Foundation
  2. Department of Defense (DoD) [W81XWH-04-1-0142]
  3. UT Lung SPORE [P50CA70907]
  4. Cancer Center Support Grant from the National Cancer Institute [CA-16672]

向作者/读者索取更多资源

Purpose: The ETS2 transcription factor is an evolutionarily conserved gene that is deregulated in cancer. We analyzed the transcriptome of lung adenocarcinomas and normal lung tissue by expression profiling and found that ETS2 was significantly downregulated in adenocarcinomas. In this study, we probed the yet unknown functional role of ETS2 in lung cancer pathogenesis. Experimental Design: Lung adenocarcinomas (n = 80) and normal lung tissues (n = 30) were profiled using the Affymetrix Human Gene 1.0 ST platform. Immunohistochemical (IHC) analysis was conducted to determine ETS2 protein expression in non-small cell lung cancer (NSCLC) histologic tissue specimens (n = 201). Patient clinical outcome, based on ETS2 IHC expression, was statistically assessed using the log-rank and Kaplan-Meier tests. RNA interference and overexpression strategies were used to assess the effects of ETS2 expression on the transcriptome and on various malignant phenotypes. Results: ETS2 expression was significantly reduced in lung adenocarcinomas compared with normal lung (P < 0.001). Low ETS2 IHC expression was a significant predictor of shorter time to recurrence in NSCLC (P = 0.009, HR = 1.89) and adenocarcinoma (P = 0.03, HR = 1.86). Moreover, ETS2 was found to significantly inhibit lung cancer cell growth, migration, and invasion (P < 0.05), and microarray and pathways analysis revealed significant (P < 0.001) activation of the HGF pathway following ETS2 knockdown. In addition, ETS2 was found to suppress MET phosphorylation and knockdown of MET expression significantly attenuated (P < 0.05) cell invasion mediated by ETS2-specific siRNA. Furthermore, knockdown of ETS2 augmented HGF-induced MET phosphorylation, cell migration, and invasion. Conclusion(s): Our findings point to a tumor suppressor role for ETS2 in human NSCLC pathogenesis through inhibition of the MET proto-oncogene. (C)2013 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据