4.7 Article

HER2-Associated Radioresistance of Breast Cancer Stem Cells Isolated from HER2-Negative Breast Cancer Cells

期刊

CLINICAL CANCER RESEARCH
卷 18, 期 24, 页码 6634-6647

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-12-1436

关键词

-

类别

资金

  1. NIH [CA133402, CA152313, CA133114]
  2. Department of Energy Office of Science [DE-SC0001271]

向作者/读者索取更多资源

Purpose: To understand the role of HER2-associated signaling network in breast cancer stem cells (BCSC) using radioresistant breast cancer cells and clinical recurrent breast cancers to evaluate HER2-targeted therapy as a tumor eliminating strategy for recurrent HER2(-/low) breast cancers. Experimental Design: HER2-expressing BCSCs (HER2(+)/CD44(+)/CD24(-/low)) were isolated from radiation-treated breast cancer MCF7 cells and in vivo irradiated MCF7 xenograft tumors. Tumor aggressiveness and radioresistance were analyzed by gap filling, Matrigel invasion, tumor-sphere formation, and clonogenic survival assays. The HER2/CD44 feature was analyzed in 40 primary and recurrent breast cancer specimens. Protein expression profiling in HER2(+)/CD44(+)/CD24(-/low) versus HER2(-)/CD44(+)/CD24(-/low) BCSCs was conducted with two-dimensional difference gel electrophoresis (2-D DIGE) and high-performance liquid chromatography tandem mass spectrometry (HPLC/MS-MS) analysis and HER2-mediated signaling network was generated by MetaCore program. Results: Compared with HER2-negative BCSCs, HER2(+)/CD44(+)/CD24(-/low) cells showed elevated aldehyde dehydrogenase (ALDH) activity and aggressiveness tested by Matrigel invasion, tumor sphere formation, and in vivo tumorigenesis. The enhanced aggressive phenotype and radioresistance of the HER2(+)/CD44(+)/CD24(-/low) cells were markedly reduced by inhibition of HER2 via siRNA or Herceptin treatments. Clinical breast cancer specimens revealed that cells coexpressing HER2 and CD44 were more frequently detected in recurrent (84.6%) than primary tumors (57.1%). In addition, 2-D DIGE and HPLC/ MS-MS of HER2(-)/CD44(+)/CD24(-/low) versus HER2(+)/CD44(+)/CD24(-/low) BCSCs reported a unique HER2-associated protein profile including effectors involved in tumor metastasis, apoptosis, mitochondrial function, and DNA repair. A specific feature of HER2-STAT3 network was identified. Conclusion: This study provides the evidence that HER2-mediated prosurvival signaling network is responsible for the aggressive phenotype of BCSCs that could be targeted to control the therapy-resistant HER2(-/low) breast cancer. Clin Cancer Res; 18(24); 6634-47.+ 2012 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据