4.7 Article

Noninvasive Radiofrequency Field Destruction of Pancreatic Adenocarcinoma Xenografts Treated with Targeted Gold Nanoparticles

期刊

CLINICAL CANCER RESEARCH
卷 16, 期 23, 页码 5712-5721

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-10-2055

关键词

-

类别

资金

  1. NIH [U54CA143837]
  2. NIH M. D. Anderson Cancer Center [CA016672]
  3. V Foundation for Cancer Research
  4. Kanzius Research Foundation

向作者/读者索取更多资源

Purpose: Pancreatic carcinoma is one of the deadliest cancers with few effective treatments. Gold nanoparticles (AuNP) are potentially therapeutic because of the safety demonstrated thus far and their physiochemical characteristics. We used the astounding heating rates of AuNPs in nonionizing radio-frequency (RF) radiation to investigate human pancreatic xenograft destruction in a murine model. Experimental Design: Weekly, Panc-1 and Capan-1 human pancreatic carcinoma xenografts in immunocompromised mice were exposed to an RF field 36 hours after treatment (intraperitoneal) with cetuximab-or PAM4 antibody-conjugated AuNPs, respectively. Tumor sizes were measured weekly, whereas necrosis and cleaved caspase-3 were investigated with hematoxylin-eosin staining and immunofluorescence, respectively. In addition, AuNP internalization and cytotoxicity were investigated in vitro with confocal microscopy and flow cytometry, respectively. Results: Panc-1 cells demonstrated increased apoptosis with decreased viability after treatment with cetuximab-conjugated AuNPs and RF field exposure (P = 0.00005). Differences in xenograft volumes were observed within 2 weeks of initiating therapy. Cetuximab-and PAM4-conjugated AuNPs demonstrated RF field-induced destruction of Panc-1 and Capan-1 pancreatic carcinoma xenografts after 6 weeks of weekly treatment (P = 0.004 and P = 0.035, respectively). There was no evidence of injury to murine organs. Cleaved caspase-3 and necrosis were both increased in treated tumors. Conclusions: This study demonstrates a potentially novel cancer therapy by noninvasively inducing intracellular hyperthermia with targeted AuNPs in an RF field. While the therapy is dependent on the specificity of the targeting antibody, normal tissues were without toxicity despite systemic therapy and whole-body RF field exposure. Clin Cancer Res; 16(23); 5712-21. (C)2010 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据