4.7 Article

Combination Therapy Targeting Both Tumor-Initiating and Differentiated Cell Populations in Prostate Carcinoma

期刊

CLINICAL CANCER RESEARCH
卷 16, 期 23, 页码 5692-5702

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-10-1601

关键词

-

类别

资金

  1. Susan G. Komen [PDF0707903]
  2. Novartis Research Foundation
  3. Skaggs Institute for Chemical Biology

向作者/读者索取更多资源

Purpose: The cancer stem cell hypothesis predicts that standard prostate cancer monotherapy eliminates bulk tumor cells but not a tumor-initiating cell population, eventually leading to relapse. Many studies have sought to determine the underlying differences between bulk tumor and cancer stem cells. Experimental Design: Our previous data suggest that the PTEN/PI3K/AKT pathway is critical for the in vitro maintenance of CD133(+)/CD44(+) prostate cancer progenitors and, consequently, that targeting PI3K signaling may be beneficial in treatment of prostate cancer. Results: Here, we show that inhibition of PI3K activity by the dual PI3K/mTOR inhibitor NVP-BEZ235 leads to a decrease in the population of CD133(+)/CD44(+) prostate cancer progenitor cells in vivo. Moreover, the combination of the PI3K/mTOR modulator NVP-BEZ235, which eliminates prostate cancer progenitor populations, and the chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors in a prostate cancer xenograft model than monotherapy. Conclusion: This combination treatment ultimately leads to the expansion of cancer progenitors with a PTEN E91D mutation, suggesting that the analysis of PTEN mutations could predict therapeutic response to the dual therapy. Clin Cancer Res; 16(23); 5692-702. (C)2010 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据