4.7 Article

Dual Inhibition of PI3K and mTORC1/2 Signaling by NVP-BEZ235 as a New Therapeutic Strategy for Acute Myeloid Leukemia

期刊

CLINICAL CANCER RESEARCH
卷 16, 期 22, 页码 5424-5435

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-10-1102

关键词

-

类别

资金

  1. Ligue Nationale Contre le Cancer (Comite de Paris)
  2. Institut National du Cancer
  3. Fondation de France
  4. Association Laurette Fugain
  5. Fondation pour la Recherche Medicale
  6. Assistance Publique des Hopitaux de Paris/La Caisse Nationale d'Assurance Maladie
  7. Institut National de la Sante Et de la Recherche Medicale

向作者/读者索取更多资源

Purpose: The growth and survival of acute myeloid leukemia (AML) cells are enhanced by the deregulation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt and mammalian target of rapamycin (mTOR). Major efforts have thus been made to develop molecules targeting these activated pathways. The mTOR serine/threonine kinase belongs to two separate complexes: mTORC1 and mTORC2. The mTORC1 pathway is rapamycin sensitive and controls protein translation through the phosphorylation of 4E-BP1 in most models. In AML, however, the translation process is deregulated and rapamycin resistant. Furthermore, the activity of PI3K/Akt and mTOR is closely related, as mTORC2 activates the oncogenic kinase Akt. We therefore tested, in this study, the antileukemic activity of the dual PI3K/mTOR ATP-competitive inhibitor NVP-BEZ235 compound (Novartis). Experimental Design: The activity of NVP-BEZ235 was tested in primary AML samples (n = 21) and human leukemic cell lines. The different signaling pathways were analyzed by Western blotting. The cap-dependent mRNA translation was studied by 7-methyl-GTP pull-down experiments, polysomal analysis, and [H-3] leucine incorporation assays. The antileukemic activity of NVP-BEZ235 was tested by analyzing its effects on leukemic progenitor clonogenicity, blast cell proliferation, and survival. Results: The NVP-BEZ235 compound was found to inhibit PI3K and mTORC1 signaling and also mTORC2 activity. Furthermore, NVP-BEZ235 fully inhibits the rapamycin-resistant phosphorylation of 4E-BP1, resulting in a marked inhibition of protein translation in AML cells. Hence, NVP-BEZ235 reduces the proliferation rate and induces an important apoptotic response in AML cells without affecting normal CD34(+) survival. Conclusions: Our results clearly show the antileukemic efficiency of the NVP-BEZ235 compound, which therefore represents a promising option for future AML therapies. Clin Cancer Res; 16(22); 5424-35. (C) 2010 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据