4.7 Article

A Novel Reduced Immunogenicity Bispecific Targeted Toxin Simultaneously Recognizing Human Epidermal Growth Factor and Interleukin-4 Receptors in a Mouse Model of Metastatic Breast Carcinoma

期刊

CLINICAL CANCER RESEARCH
卷 15, 期 19, 页码 6137-6147

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-09-0696

关键词

-

类别

资金

  1. USPHS [RO1-CA36725, RO1-CA082154]
  2. National Cancer Institute
  3. National Institute of Allergy and Infectious Disease (NIAID)
  4. Department of Health and Human Services
  5. Randy Shaver Foundation.

向作者/读者索取更多资源

Purpose: To develop a targeted biological drug that when systemically injected can penetrate to metastatic breast cancer tumors, one needs a drug of high potency and reduced immunogenicity. Thus, we bioengineered a novel bispecific ligand-directed toxin (BLT) targeted by dual high-affinity cytokines with a PE38KDEL COOH terminus. Our purpose was to reduce toxin immunogenicity using mutagenesis, measure the ability of mutated drug to elicit B-cell antitoxin antibody responses, and show that mutated drug was effective against systemic breast cancer in vivo. Experimental Design: A new BLT was created in which both human epidermal growth factor (EGF) and interleukin 4 cytokines were cloned onto the same single-chain molecule with truncated Pseudomonas exotoxin (PE38). Site-specific mutagenesis was used to mutate amino acids in seven key epitopic toxin regions that dictate B-cell generation of neutralizing antitoxin antibodies. Bioassays were used to determine whether mutation reduced potency, and ELISA studies were done to determine whether antitoxin antibodies were reduced. Finally, a genetically altered luciferase xenograft model was used; this model could be imaged in real time to determine the effect on the systemic malignant human breast cancer MDA-MB-231. Results: EGF4KDEL 7mut was significantly effective against established systemic human breast cancer and prevented metastatic spread. Mutagenesis reduced immunogenicity by similar to 90% with no apparent loss in in vitro or in vivo activity. Conclusions: Because EGF4KDEL 7mut was highly effective even when we waited 26 days to begin therapy and because immunogenicity was significantly reduced, we can now give multiple drug treatments for chemotherapy-refractory breast cancer in clinical trials. (Clin Cancer Res 2009;15(19):6137-47)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据