4.4 Article

Explanation of penetration depth variation during laser welding under variable ambient pressure

期刊

JOURNAL OF LASER APPLICATIONS
卷 27, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.2351/1.4913455

关键词

laser welding; ambient pressure; penetration depth; keyhole wall temperature

资金

  1. National Natural Science Foundation of China [51105153, 51323009]
  2. National Basic Research Program of China (973 Program) [2014CB046703]

向作者/读者索取更多资源

It has been observed that the penetration depth during laser welding (LW) under vacuum or reduced ambient pressure could be significantly greater than that during welding under atmospheric pressure. Previous explanations of this phenomenon usually limit to specific wavelength laser welding and have difficulties in explaining why the variation will disappear, as the welding speed increases. Here, we propose that this variation is caused by the temperature difference of keyhole wall under variable ambient pressure based on a correct physical description of related processes. A new surface pressure model, dependent on ambient pressure, is proposed for describing the evaporation process during laser material interaction under variable ambient pressure. For laser welding of a 304 stainless steel with 2.0kW laser power and 3m/min welding speed, it is shown that the average keyhole wall temperature is around 2900K under atmospheric pressure, and only around 2300K under vacuum, which results in significant penetration depth variations. Interestingly, it is also shown that as the welding speed increases, the average temperature of the front keyhole wall gradually rises due to the reduction of the mean incident angle of laser, and the magnitude of this increase is larger in welding under vacuum than under atmospheric pressure. It allows us to explain why the penetration depth improvement decreases to zero with the increase of welding speed. (C) 2015 Laser Institute of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据