3.9 Article

Serological Response of Shiga Toxin-Producing Escherichia coli Type III Secreted Proteins in Sera from Vaccinated Rabbits, Naturally Infected Cattle, and Humans

期刊

CLINICAL AND VACCINE IMMUNOLOGY
卷 18, 期 7, 页码 1052-1057

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/CVI.00068-11

关键词

-

资金

  1. National Science and Engineering Research Council of Canada (NSERC)
  2. Canadian Institutes of Health Research (CIHR)
  3. Bioniche Life Sciences

向作者/读者索取更多资源

Escherichia coli O157:H7 is an important zoonotic pathogen, causing hemolytic uremic syndrome (HUS). The colonization of cattle and human hosts is mediated through the action of effectors secreted via a type III secretion system (T3SS). The structural genes for the T3SS and many of the secreted effectors are located on a pathogenicity island called the locus of enterocyte effacement (LEE). We cloned and expressed the genes coding for 66 effectors and purified each to measure the cross-reactivity of type III secreted proteins from Shiga toxin-producing Escherichia coli (STEC) serotypes. These included 37 LEE-encoded proteins and 29 non-LEE effectors. The serological response against each protein was measured by Western blot analysis and enzyme-linked immunosorbent assay (ELISA) using sera from rabbits immunized with type III secreted proteins (T3SPs) from four STEC serotypes, experimentally infected cattle, and human sera from six HUS patients. Twenty proteins were recognized by at least one of the STEC T3SP-vaccinated rabbits by Western blotting. Several structural proteins (EspA, EspB, and EspD) and a number of effectors (Tir, NleA, and TccP) were recognized by O26-, O103-, O111-, and O157-specific sera. Sera from experimentally infected cattle and HUS patients were tested using an ELISA against each of the proteins. Tir, EspB, EspD, EspA, and NleA were recognized by the majority of the samples tested. A number of other proteins also were recognized by individual serum samples. Overall, proteins such as Tir, EspB, EspD, NleA, and EspA were highly immunogenic in vaccinated and naturally infected subjects and could be candidates for a cross-protective STEC vaccine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据