4.2 Review

Biomarkers associated with high-density lipoproteins in atherosclerotic kidney disease

期刊

CLINICAL AND EXPERIMENTAL NEPHROLOGY
卷 18, 期 2, 页码 247-250

出版社

SPRINGER
DOI: 10.1007/s10157-013-0865-x

关键词

HDL; ApoA-I; Non-enzymatic glycation; Diabetes; End-stage renal disease

资金

  1. National Health and Medical Research Council of Australia [1037903]

向作者/读者索取更多资源

High-density lipoproteins (HDL) originate as discoidal particles that are rapidly converted by lecithin:cholesterol acyltransferase (LCAT) into the spherical particles that predominate in normal human plasma. Spherical HDL consist of multiple populations of particles that vary widely in size, composition and function. Human population studies have established that high plasma HDL cholesterol levels are associated with a reduced incidence of cardiovascular disease. The mechanistic basis of this relationship is not well understood, but most likely involves a number of the cardioprotective functions of HDL. These include the ability of apolipoprotein (apo) A-I, the main apolipoprotein constituent of HDL, to remove cholesterol from macrophages in the artery wall. HDL also have antioxidant and anti-inflammatory properties that are potentially cardioprotective. Evidence that some of these beneficial properties are compromised in people with diabetes and renal disease is emerging. Persistently elevated plasma glucose levels in people with diabetes and poor glycemic control can lead to irreversible, non-enzymatic glycation of plasma proteins, including apoA-I. Non-enzymatically glycated proteins are also prevalent in people with diabetes and end-stage renal disease who are at high cardiovascular risk. Evidence that non-enzymatically glycated apoA-I inhibits the LCAT reaction and impairs some of the cardioprotective properties of HDL is also emerging. This review is concerned with how non-enzymatic glycation of apoA-I affects the ability of LCAT to convert discoidal HDL into spherical HDL, how it affects cholesterol efflux from macrophages and how it affects the anti-inflammatory and antioxidant properties of HDL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据