4.5 Article

Sensitivity of high-resolution Arctic regional climate model projections to different implementations of land surface processes

期刊

CLIMATIC CHANGE
卷 111, 期 2, 页码 197-214

出版社

SPRINGER
DOI: 10.1007/s10584-011-0138-1

关键词

-

资金

  1. European Union

向作者/读者索取更多资源

This paper discusses the effects of vegetation cover and soil parameters on the climate change projections of a regional climate model over the Arctic domain. Different setups of the land surface model of the regional climate model HIRHAM were realized to analyze differences in the atmospheric circulation caused by (1) the incorporation of freezing/thawing of soil moisture, (2) the consideration of top organic soil horizons typical for the Arctic and (3) a vegetation shift due to a changing climate. The largest direct thermal effect in 2 m air temperature was found for the vegetation shift, which ranged between -1.5 K and 3 K. The inclusion of a freeze/thaw scheme for soil moisture shows equally large sensitivities in spring over cool areas with high soil moisture content. Although the sensitivity signal in 2 m air temperature for the experiments differs in amplitude, all experiments show changes in mean sea level pressure (mslp) and geopotential height (z) throughout the troposphere of similar magnitude (mslp: -2 hPa to 1.5 hPa, z: -15 gpm to 5 gpm). This points to the importance of dynamical feedbacks within the atmosphere-land system. Land and soil processes have a distinct remote influence on large scale atmospheric circulation patterns in addition to their direct, regional effects. The assessment of induced uncertainties due to the changed implementations of land surface processes discussed in this study demonstrates the need to take all those processes for future Arctic climate projections into account, and demonstrates a clear need to include similar implementations in regional and global climate models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据