4.2 Article

Climate change impacts on growth and carbon balance of forests in Central Europe

期刊

CLIMATE RESEARCH
卷 47, 期 3, 页码 219-236

出版社

INTER-RESEARCH
DOI: 10.3354/cr01024

关键词

Norway spruce; European beech; Oak; Forest carbon cycle; Tree production; Tree mortality; BIOME-BGC model; SIBYLA tree growth simulator

资金

  1. European Union
  2. European Social Fund [TAMOP 4.2.1/B-09/1/KMR-2010-0003]

向作者/读者索取更多资源

We analysed climate change impacts on the growth and natural mortality of forest tree species and forest carbon (C) balance along an elevation gradient extending from the Pannonian lowland to the West Carpathian Mountains (Central Europe). Norway spruce Picea abies, European beech Fagus sylvatica, and oak Quercus sp. were investigated for 2 future time periods: 2021-2050 and 2071-2100. The period 1961-1990 was used as reference. Forest growth simulations were based on the SIBYLA tree growth simulator (an empirical model), and C cycle-related simulations were performed using BIOME-BGC (a process-based biogeochernical model). Growth simulations indicated that climate change will substantially affect the growth of spruce and beech, but not of oak, in Central Europe. Growth of spruce and beech in their upper distribution ranges was projected to improve, while drought-induced production decline was projected at the species' receding edges. Beech was the only species projected to decline critically at lower elevations. C cycle simulations performed for the zone of ecological optima of the 3 tree species indicated that these forests are likely to remain net carbon dioxide sinks in the future, although the magnitude of their sequestration capacity will differ. Increasing nitrogen deposition and atmospheric carbon dioxide concentration were projected to greatly affect the forest C cycle. A multi-model assessment based on SIBYLA and BIOME-BGC simulations performed for the zone of ecological optima suggested that oak production will either remain the same as in the reference period or will increase. Future production of beech seems uncertain and might decline, while spruce production is likely to increase. The results also confirmed the value of multi-model approaches for assessing future forest development under climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据