4.6 Article

Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling

期刊

CLIMATE DYNAMICS
卷 40, 期 3-4, 页码 839-856

出版社

SPRINGER
DOI: 10.1007/s00382-012-1337-9

关键词

Climate change; Regional climate modeling; Dynamical downscaling; Statistical downscaling

资金

  1. public interest energy research (PIER) program of the California Energy Commission (CEC) [500-07-042]
  2. International ad-hoc Detection and Attribution (IDAG) project from the US Department of Energy's Office of Science, Office of Biological and Environmental Research [DE-SC0004956]
  3. National Oceanic and Atmospheric Administration's Climate Program Office
  4. Department of Energy [DE-SC0002000]
  5. CALFED Bay-Delta Program
  6. Grants-in-Aid for Scientific Research [23686071] Funding Source: KAKEN

向作者/读者索取更多资源

Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate variability is roughly of similar magnitude to the projected T changes. In the monthly average, July temperatures shift enough that that the hottest July found in any simulation over the historical period becomes a modestly cool July in the future period. Januarys as cold as any found in the historical period are still found in the 2060s, but the median and maximum monthly average temperatures increase notably. Annual and seasonal P changes are small compared to interannual or intermodel variability. However, the annual change is composed of seasonally varying changes that are themselves much larger, but tend to cancel in the annual mean. Winters show modestly wetter conditions in the North of the state, while spring and autumn show less precipitation. The dynamical downscaling techniques project increasing precipitation in the Southeastern part of the state, which is influenced by the North American monsoon, a feature that is not captured by the statistical downscaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据