4.6 Article

Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size

期刊

CLIMATE DYNAMICS
卷 37, 期 11-12, 页码 2481-2493

出版社

SPRINGER
DOI: 10.1007/s00382-011-1000-x

关键词

Climate change; East Asian summer monsoon; High horizontal resolution global atmospheric model

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology (MEXT)

向作者/读者索取更多资源

Global warming projection experiments were conducted using a 20-km mesh global atmospheric model, focusing on the change in the rain band of East Asian summer monsoon. To assess the uncertainty of climate change projections, we performed ensemble simulations with the 60-km resolution model combining four different SSTs and three atmospheric initial conditions. In the present-day climate simulations, the 20-km model reproduces the rain band of East Asian summer monsoon better than lower resolution models in terms of geographical distribution and seasonal march. In the future climate simulation by the 20-km model, precipitation increases over the Yangtze River valley in May through July, Korean peninsula in May, and Japan in July. The termination of rainy season over Japan tends to be delayed until August. Ensemble simulations by the 60-km model show that precipitation in the future climate for July increases over the Yangtze River valley, the East China Sea and Japan. These changes in precipitation are partly consistent with those projected by the 20-km model. Simulations by the 20-km and 60-km models consistently show that in the future climate the termination of rainy season over Japan tends to be delayed until August. The changes in the vertically integrated water vapor flux show the intensification of clockwise moisture transport over the western Pacific subtropical high. Most precipitation changes over the East Asia can be interpreted as the moisture convergence resulting from change in the horizontal transport of water vapor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据