4.5 Article

ANN-GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler

期刊

CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY
卷 15, 期 1, 页码 125-131

出版社

SPRINGER
DOI: 10.1007/s10098-012-0490-5

关键词

Coal combustion process; NOx emission; ANN; GA; Predictive modeling; Optimization

向作者/读者索取更多资源

An artificial neural network (ANN) and genetic algorithm (GA) approach to predict NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas, is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet temperature, and nozzle tilt were studied. The data collected from parametric field experiments was used to build a feed-forward back-propagation neural net. The coal combustion parameters were used as inputs and NOx emission as outputs of the model. The ANN model was developed for full load conditions and its predicted values were verified with the actual values. The algebraic equation containing weights and biases of the trained net was used as fitness function in GA. The genetic search was used to find the optimum level of input operating conditions corresponding to low NOx emission. The results proved that the proposed approach could be used for generating feasible operating conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据