4.4 Article

SIMPLE SYNTHESIS AND CHARACTERIZATION OF NANOPOROUS MATERIALS FROM TALC

期刊

CLAYS AND CLAY MINERALS
卷 57, 期 3, 页码 290-301

出版社

SPRINGER
DOI: 10.1346/CCMN.2009.0570302

关键词

Acid Leaching; Grinding; Hydrothermal Treatment; Mesoporous Silica; Nanoporous Silica; Silicate Minerals; Talc

资金

  1. National Natural Science Foundation of China [50774095, 50304014]
  2. Program for New Century Excellent Talents in University [NCET-05-0695]
  3. Excellent Youth Foundation of Central South University
  4. New Century 12l Excellent Talents in Hunan Province [05030119]

向作者/读者索取更多资源

Synthetic siliceous mesoporous materials are of great value in many different applications, including nanotechnology, biotechnology, information technology, and medical fields, but historically the resource materials used in their synthesis have been expensive. Recent efforts have focused on indirect synthesis methods which utilize less expensive silicate minerals as a resource material. The purpose of the present study was to investigate talc, a natural silicate mineral, as one such resource. It was used as raw material to prepare two advanced materials: porous silica (PS) and ordered mesoporous silica (MCM-41). The PS, with a specific surface area of 260 m(2)/g and bimodal pore-size distribution of 1.2 nm and 3.7 run, was prepared by grinding and subsequent acid leaching. The MCM-41, with a large surface area of 974 m(2)/g and a narrow pore-size distribution of 2.8 nm, was obtained using a surfactant, cetyltrimethylammonium bromide (CTAB), by hydrothermal treatment using the as-prepared PS as a source of Si. The two resultant materials were characterized by small angle X-ray diffraction (SAXRD) and wide-angle X-ray diffraction (WAXRD), high-resolution transmission electron microscopy (HRTEM), solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR), Fourier transform infrared spectroscopy (FTIR), and N-2 adsorption-desorption measurements. Based on these measurements, possible processes of transformation of PS from talc, upon acid treatment, and the formation of MCM-41 were investigated systemically. Acid leaching induced the transformation of a rigid layered structure to a nearly amorphous one, with micropores formed by a residual layered structure and mesopores formed from a condensed framework. The MCM-41 was a mixture of silanol groups (Si(SiO)(3)(OH)) and a condensed Q(4) framework structure (Si(SiO)(4)), with a small amount of remaining Q(3) layered structure (Si(SiO)(3)OMg). The increased Q(4)/Q(3) value confirmed greater polymerization of MCM-41 than of PS. At the low CTAB concentration used (2 wt.%), the highly charged silicate species controlled the surfactant geometry. Charge-density matching, together with the degree of polymerization of the silicates, determined the resultant mesophase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据