4.4 Article

Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales

期刊

CLAYS AND CLAY MINERALS
卷 56, 期 1, 页码 66-81

出版社

SPRINGER
DOI: 10.1346/CCMN.2008.0560106

关键词

anchizone; clay transformation; diagenesis; epizone; illite; muscovite; quartz; silica; smectite

向作者/读者索取更多资源

Quantitative analysis of the smectite-to-illite and illite-to-muscovite transformations indicates that 17-28 wt.% SiO2 and 17-23 wt.% SiO2, respectively, are liberated during these reactions, assuming that At is conserved. Dissolution of quartz silt in shales yields up to 6-9% SiO2 in the range up to 200 degrees C and a further 10-15% SiO2 in the 200-500 degrees C range. For muds altered to shales at 200 degrees C, 14-20 wt.% silica is evolved. From 200 to 500 degrees C, a further 18-28 wt.% silica is evolved. Additional small amounts of silica may be released in the alteration of feldspar to clay and by stylolitization of quartz silt. Thus, in the burial and temperature range of diagenesis into the epizone, major quantities of silica are released from clays and by quartz dissolution in shales. Within this range of alteration, concomitant decline of whole-rock Si/Al (SiO2/Al2O3) in the transformation of smectite to illite to muscovite suggests the liberated silica migrates from the source shale. As a result, the metamorphosed shales are more micaceous and less quartzose than their progenitor muds. In the diagenetic zone and anchizone, the evolved silica is probably a major source of quartz cement in sandstones. In the epizone, evolved silica is commonly present in quartz veins in the parent rocks. Fluid-inclusion temperatures in quartz overgrowths and fracture fillings in some sandstones suggest that some cements may have been derived from downdip basinal shales and pressure solution in sandstones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据