4.4 Article

Evolution of linear perturbations in spherically symmetric dust spacetimes

期刊

CLASSICAL AND QUANTUM GRAVITY
卷 31, 期 17, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0264-9381/31/17/175008

关键词

cosmological perturbation theory; Lemaitre-Tolman-Bondi spacetime; relativistic corrections

资金

  1. South African Square Kilometre Array Project

向作者/读者索取更多资源

We present results from a numerical code implementing a new method to solve the master equations describing the evolution of linear perturbations in a spherically symmetric but inhomogeneous background. This method can be used to simulate several configurations of physical interest, such as relativistic corrections to structure formation, the lensing of gravitational waves (GWs) and the evolution of perturbations in a cosmological void model. This paper focuses on the latter problem, i.e. structure formation in a Hubble scale void in the linear regime. This is considerably more complicated than linear perturbations of a homogeneous and isotropic background because the inhomogeneous background leads to coupling between density perturbations and rotational modes of the spacetime geometry, as well as GWs. Previous analyses of this problem ignored this coupling in the hope that the approximation does not affect the overall dynamics of structure formation in such models. We show that for a giga-parsec void, the evolution of the density contrast is well approximated by the previously studied decoupled evolution only for very large-scale modes. However, the evolution of the gravitational potentials within the void is inaccurate at more than the 10% level, and is even worse on small scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据