4.6 Article

Near-Infrared II Fluorescence for Imaging Hindlimb Vessel Regeneration With Dynamic Tissue Perfusion Measurement

期刊

CIRCULATION-CARDIOVASCULAR IMAGING
卷 7, 期 3, 页码 517-U150

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCIMAGING.113.000305

关键词

angiography; hemodynamics; nanotubes, carbon

资金

  1. National Cancer Institute of the National Institutes of Health [5R01CA135109-02]
  2. National Heart, Lung, and Blood Institute of the National Institutes of Health [U01HL100397, RC2HL103400, R00HL098688]
  3. National Science Foundation [1249008]
  4. Department of Defense [W81XWH-12-C-0111]
  5. Stanford Cardiovascular Institute
  6. Stanford Graduate Fellowship
  7. Directorate For Engineering [1249008] Funding Source: National Science Foundation
  8. Div Of Industrial Innovation & Partnersh [1249008] Funding Source: National Science Foundation

向作者/读者索取更多资源

Background-Real-time vascular imaging that provides both anatomic and hemodynamic information could greatly facilitate the diagnosis of vascular diseases and provide accurate assessment of therapeutic effects. Here, we have developed a novel fluorescence-based all-optical method, named near-infrared II (NIR-II) fluorescence imaging, to image murine hindlimb vasculature and blood flow in an experimental model of peripheral arterial disease, by exploiting fluorescence in the NIR-II region (1000-1400 nm) of photon wavelengths. Methods and Results-Because of the reduced photon scattering of NIR-II fluorescence compared with traditional NIR fluorescence imaging and thus much deeper penetration depth into the body, we demonstrated that the mouse hindlimb vasculature could be imaged with higher spatial resolution than in vivo microscopic computed tomography. Furthermore, imaging during 26 days revealed a significant increase in hindlimb microvascular density in response to experimentally induced ischemia within the first 8 days of the surgery (P<0.005), which was confirmed by histological analysis of microvascular density. Moreover, the tissue perfusion in the ischemic hindlimb could be quantitatively measured by the dynamic NIR-II method, revealing the temporal kinetics of blood flow recovery that resembled microbead-based blood flowmetry and laser Doppler blood spectroscopy. Conclusions-The penetration depth of millimeters, high spatial resolution, and fast acquisition rate of NIR-II imaging make it a useful imaging tool for murine models of vascular disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据