4.6 Article

Automated Quantitative 3-Dimensional Modeling of the Aortic Valve and Root by 3-Dimensional Transesophageal Echocardiography in Normals, Aortic Regurgitation, and Aortic Stenosis Comparison to Computed Tomography in Normals and Clinical Implications

期刊

CIRCULATION-CARDIOVASCULAR IMAGING
卷 6, 期 1, 页码 99-108

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCIMAGING.112.976993

关键词

3D echocardiography; 3D modeling; aortic root; aortic valve

资金

  1. Siemens

向作者/读者索取更多资源

Background We tested the ability of a novel automated 3-dimensional (3D) algorithm to model and quantify the aortic root from 3D transesophageal echocardiography (TEE) and computed tomographic (CT) data. Methods and Results We compared the quantitative parameters obtained by automated modeling from 3D TEE (n=20) and CT data (n=20) to those made by 2D TEE and targeted 2D from 3D TEE and CT in patients without valve disease (normals). We also compared the automated 3D TEE measurements in severe aortic stenosis (n=14), dilated root without aortic regurgitation (n=15), and dilated root with aortic regurgitation (n=20). The automated 3D TEE sagittal annular diameter was significantly greater than the 2D TEE measurements (P=0.004). This was also true for the 3D TEE and CT coronal annular diameters (P<0.01). The average 3D TEE and CT annular diameter was greater than both their respective 2D and 3D sagittal diameters (P<0.001). There was no significant difference in 2D and 3D measurements of the sinotubular junction and sinus of valsalva diameters (P>0.05) in normals, but these were significantly different (P<0.05) in abnormals. The 3 automated intercommissural distance and leaflet length and height did not show significant differences in the normals (P>0.05), but all 3 were significantly different compared with the abnormal group (P<0.05). The automated 3D annulus commissure coronary ostia distances in normals showed significant difference between 3D TEE and CT (P<0.05); also, these parameters by automated 3D TEE were significantly different in abnormal (P<0.05). Finally, the automated 3D measurements showed excellent reproducibility for all parameters. Conclusions Automated quantitative 3D modeling of the aortic root from 3D TEE or CT data is technically feasible and provides unique data that may aid surgical and transcatheter interventions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据