4.3 Article Proceedings Paper

Interconnect and bonding techniques for pixelated X-ray and gamma-ray detectors

期刊

JOURNAL OF INSTRUMENTATION
卷 10, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1748-0221/10/02/C02010

关键词

X-ray detectors; Detector design and construction technologies and materials; Gamma detectors (scintillators, CZT, HPG, HgI etc); Manufacturing

资金

  1. Engineering and Physical Sciences Research Council [1224538] Funding Source: researchfish

向作者/读者索取更多资源

In the last decade, the Detector Development Group at the Technology Department of the Science and Technology Facilities Council (STFC), U.K., established a variety of fabrication and bonding techniques to build pixelated X-ray and gamma-ray detector systems such as the spectroscopic X-ray imaging detector HEXITEC [1]. The fabrication and bonding of such devices comprises a range of processes including material surface preparation, photolithography, stencil printing, flip-chip and wire bonding of detectors to application-specific integrated circuits (ASIC). This paper presents interconnect and bonding techniques used in the fabrication chain for pixelated detectors assembled at STFC. For this purpose, detector dies (similar to 20 x 20mm(2)) of high quality, single crystal semiconductors, such as cadmium zinc telluride (CZT) are cut to the required thickness (up to 5mm). The die surfaces are lapped and polished to a mirror-finish and then individually processed by electroless gold deposition combined with photolithography to form 74 x 74 arrays of 200 mu m x 200 mu m pixels with 250 mu m pitch. Owing to a lack of availability of CZT wafers, lithography is commonly carried out on individual detector dies which represents a significant technical challenge as the edge of the pixel array and the surrounding guard band lies close to the physical edge of the crystal. Further, such detector dies are flip-chip bonded to readout ASIC using low-temperature curing silver-loaded epoxy so that the stress between the bonded detector die and the ASIC is minimized. In addition, this reduces crystalline modifications of the detector die that occur at temperature greater than 150 degrees C and have adverse effects on the detector performance. To allow smaller pitch detectors to be bonded, STFC has also developed a compression cold-weld indium bump bonding technique utilising bumps formed by a photolithographic lift-off technique.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据