3.8 Article

SuperTAG Methylation-specific Digital Karyotyping Reveals Uremia-induced Epigenetic Dysregulation of Atherosclerosis-Related Genes

期刊

CIRCULATION-CARDIOVASCULAR GENETICS
卷 5, 期 6, 页码 611-620

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCGENETICS.112.963207

关键词

cardiovascular diseases; DNA methylation; epigenetics; genome-wide analysis; kidney

资金

  1. HOMFOR
  2. Else Kroner-Fresenius-Stiftung

向作者/读者索取更多资源

Background-Accelerated atherosclerosis is a hallmark of chronic kidney disease (CKD). Although the role of epigenetic dysregulation in atherosclerosis is increasingly appreciated, only a few studies focused on epigenetics in CKD-associated cardiovascular disease, virtually all of which assessed epigenetic dysregulation globally. We hypothesized that gene-specific epigenetic dysregulation in CKD exists, affecting genes pertinent to inflammation and atherosclerosis. Methods and Results-Ten clinically stable patients undergoing hemodialysis therapy and 10 healthy age- and sex-matched controls were recruited. Genome-wide analysis of DNA methylation was performed by SuperTAG methylation-specific digital karyotyping, in order to identify genes differentially methylated in CKD. Analysis of 27 043 436 tags revealed 4288 genomic loci with differential DNA methylation (P<10(-10)) between hemodialysis patients and control subjects. Annotation of UniTags to promoter databases allowed us to identify 52 candidate genes associated with cardiovascular disease and 97 candidate genes associated with immune/infection diseases. These candidate genes could be classified to distinct proatherogenic processes, including lipid metabolism and transport (eg, HMGCR, SREBF1, LRP5, EPHX2, and FDPS), cell proliferation and cell-cycle regulation (eg, MIK67, TP53, and ALOX12), angiogenesis (eg, ANGPT2, ADAMTS10, and FLT4), and inflammation (eg, TNFSF10, LY96, IFNGR1, HSPA1A, and IL12RB1). Conclusions-We provide a comprehensive analysis of genome-wide epigenetic alterations in CKD, identifying candidate genes associated with proatherogenic and inflammatory processes. These results may spur further research in the field of epigenetics in kidney disease and point to new therapeutic strategies in CKD-associated atherosclerotic disease. (Circ Cardiovasc Genet. 2012;5:611-620.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据