4.7 Article

Actin Binding GFP Allows 4D In Vivo Imaging of Myofilament Dynamics in the Zebrafish Heart and the Identification of Erbb2 Signaling as a Remodeling Factor of Myofibril Architecture

期刊

CIRCULATION RESEARCH
卷 115, 期 10, 页码 845-U98

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.115.304356

关键词

cardiomyopathies; Erbb2 protein; human; growth & development; heart contractility; myocardial contraction; myofibrils; sarcomeres

资金

  1. Deutsche Forschungsgemeinschaft
  2. American Heart Association
  3. National Institutes of Health (NIH) [F32HL110489]
  4. Sarnoff Cardiovascular Research Foundation
  5. NIH [RO1HL54737]
  6. Packard Foundation
  7. Max Planck Society

向作者/读者索取更多资源

Rationale: Dilated cardiomyopathy is a leading cause of congestive heart failure and a debilitating complication of antineoplastic therapies. Despite disparate causes for dilated cardiomyopathy, maladaptive cardiac remodeling and decreased systolic function are common clinical consequences, begging an investigation of in vivo contractile dynamics in development and disease, one that has been impossible to date. Objective: To image myocardial contractile filament dynamics in vivo and to assess potential causes of dilated cardiomyopathy in antineoplastic therapies targeting the epidermal growth factor receptor Erbb2. Methods and Results: We generated a transgenic zebrafish line expressing an actin-binding green fluorescent protein in cardiomyocytes, allowing an in vivo imaging of myofilaments. Analysis of this line revealed architectural differences in myofibrils of the distinct cardiomyocyte subtypes. We used this model to investigate the effects of Erbb2 signaling on myofibrillar organization because drugs targeting ERBB2 (HER2/NEU) signaling, a mainstay of breast cancer chemotherapy, cause dilated cardiomyopathy in many patients. High-resolution in vivo imaging revealed that Erbb2 signaling regulates a switch between a dense apical network of filamentous myofibrils and the assembly of basally localized myofibrils in ventricular cardiomyocytes. Conclusions: Using this novel line, we compiled a reference for myofibrillar microarchitecture among myocardial subtypes in vivo and at different developmental stages, establishing this model as a tool to analyze in vivo cardiomyocyte contractility and remodeling for a broad range of cardiovascular questions. Furthermore, we applied this model to study Erbb2 signaling in cardiomyopathy. We show a direct link between Erbb2 activity and remodeling of myofibrils, revealing an unexpected mechanism with potentially important implications for prevention and treatment of cardiomyopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据