4.7 Article

Cardiac Myocyte Z-Line Calmodulin Is Mainly RyR2-Bound, and Reduction Is Arrhythmogenic and Occurs in Heart Failure

期刊

CIRCULATION RESEARCH
卷 114, 期 2, 页码 295-306

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.114.302857

关键词

arrhythmias; cardiac; fluorescence resonance energy transfer; heart failure; ryanodine receptor calcium release channel

资金

  1. National Institutes of Health grants [R01-HL092097, P01-HL080101, R01HL073051]
  2. Banyu Life Science Foundation International

向作者/读者索取更多资源

Rationale: Calmodulin (CaM) associates with cardiac ryanodine receptor type-2 (RyR2) as an important regulator. Defective CaM-RyR2 interaction may occur in heart failure, cardiac hypertrophy, and catecholaminergic polymorphic ventricular tachycardia. However, the in situ binding properties for CaM-RyR2 are unknown. Objective: We sought to measure the in situ binding affinity and kinetics for CaM-RyR2 in normal and heart failure ventricular myocytes, estimate the percentage of Z-line-localized CaM that is RyR2-bound, and test cellular function of defective CaM-RyR2 interaction. Methods and Results: Using fluorescence resonance energy transfer in permeabilized myocytes, we specifically resolved RyR2-bound CaM from other potential binding targets and measured CaM-RyR2 binding affinity in situ (K-d=10-20 nmol/L). Using RyR2(ADA/+) knock-in mice, in which half of the CaM-RyR2 binding is suppressed, we estimated that >90% of Z-line CaM is RyR2-bound. Functional tests indicated a higher propensity for Ca2+ wave production and stress-induced ventricular arrhythmia in RyR2(ADA/+) mice. In a post-myocardial infarction rat heart failure model, we detected a decrease in the CaM-RyR2 binding affinity (K-d approximate to 51 nmol/L; approximate to 3-fold increase) and unaltered RyR2 affinity for the FK506-binding protein FKBP12.6 (Kd similar to 0.8 nmol/L). Conclusions: CaM binds to RyR2 with high affinity in cardiac myocytes. Physiologically, CaM is bound to >70% of RyR2 monomers and inhibits sarcoplasmic reticulum Ca2+ release. RyR2 is the major binding site for CaM along the Z-line in cardiomyocytes, and dissociating CaM from RyR2 can cause severe ventricular arrhythmia. In heart failure, RyR2 shows decreased CaM affinity, but unaltered FKBP 12.6 affinity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据