4.7 Article

Regulation of Vascular Smooth Muscle Cell Turnover by Endothelial Cell-Secreted MicroRNA-126: Role of Shear Stress

期刊

CIRCULATION RESEARCH
卷 113, 期 1, 页码 40-51

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.113.280883

关键词

atherosclerosis; endothelial cell; extracellular miR-126; shear stress; smooth muscle cell

资金

  1. National Institutes of Health [HL106579, HL89940, HL108735]
  2. National Science Council [NSC-99-2911-I-009-101, NSC-100-2325-B-400-011, NSC-101-2321-B-400-001]

向作者/读者索取更多资源

Rationale: Endothelial microRNA-126 (miR-126) modulates vascular development and angiogenesis. However, its role in the regulation of smooth muscle cell (SMC) function is unknown. Objective: To elucidate the role of miR-126 secreted by endothelial cells (ECs) in regulating SMC turnover in vitro and in vivo, as well as the effects of shear stress on the regulation. Methods and Results: Coculture of SMCs with ECs or treatment of SMCs with conditioned media from static EC monoculture (EC-CM) increased SMC miR-126 level and SMC turnover; these effects were abolished by inhibition of endothelial miR-126 and by the application of laminar shear stress to ECs. SMC miR-126 did not increase when treated with EC-CM from ECs subjected to inhibition of miR biogenesis, or with CM from sheared ECs. Depletion of extracellular/secreted vesicles in EC-CM did not affect the increase of SMC miR-126 by EC-CM. Biotinylated miR-126 or FLAG (DYKDDDDK epitope)-tagged Argonaute2 transfected into ECs was detected in the cocultured or EC-CM-treated SMCs, indicating a direct EC-to-SMC transmission of miR-126 and Argonaute2. Endothelial miR-126 represses forkhead box O3, B-cell lymphoma 2, and insulin receptor substrate 1 mRNAs in the cocultured SMCs, suggesting the functional roles of the transmitted miR-126. Systemic depletion of miR-126 in mice inhibited neointimal lesion formation of carotid arteries induced by cessation of blood flow. Administration of EC-CM or miR-126 mitigated the inhibitory effect. Conclusions: Endothelial miR-126 acts as a key intercellular mediator to increase SMC turnover, and its release is reduced by atheroprotective laminar shear stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据