4.7 Article

Reduced Sodium Channel Function Unmasks Residual Embryonic Slow Conduction in the Adult Right Ventricular Outflow Tract Short Communication

期刊

CIRCULATION RESEARCH
卷 113, 期 2, 页码 137-141

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.113.301565

关键词

Brugada; Cx43; development; RVOT; Scn5a

资金

  1. Netherlands Heart Foundation [2008B062]
  2. European Community's Seventh Framework Program ['CardioGeNet' 223463]
  3. Established Investigator Grant from the Netherlands Heart Foundation [NHS 2005T025]
  4. Division for Earth and Life Sciences (ALW) [836.09.003]
  5. Netherlands Organization for Scientific Research (NWO)

向作者/读者索取更多资源

Rationale: In patients with Brugada syndrome, arrhythmias typically originate in the right ventricular outflow tract (RVOT). The RVOT develops from the slowly conducting embryonic outflow tract. Objective: We hypothesize that this embryonic phenotype is maintained in the fetal and adult RVOT and leads to conduction slowing, especially after sodium current reduction. Methods and Results: We determined expression patterns in the embryonic myocardium and performed activation mapping in fetal and adult hearts, including hearts from adult mice heterozygous for a mutation associated with Brugada syndrome (Scn5a(1798insD/+)). The embryonic RVOT was characterized by expression of Tbx2, a repressor of differentiation, and absence of expression of both Hey2, a ventricular transcription factor, and Gja1, encoding the principal gap-junction subunit for ventricular fast conduction. Also, conduction velocity was lower in the RVOT than in the right ventricular free wall. Later in the development, Gja1 and Scn5a expression remained lower in the subepicardial myocardium of the RVOT than in RV myocardium. Nevertheless, conduction velocity in the adult RVOT was similar to that of the right ventricular free wall. However, in hearts of Scn5a(1798insD/+) mice and in normal hearts treated with ajmaline, conduction was slower in the RVOT than in the right ventricular wall. Conclusions: The slowly conducting embryonic phenotype is maintained in the fetal and adult RVOT and is unmasked when cardiac sodium channel function is reduced.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据