4.7 Article

Integrin-Linked Kinase Regulates Vasomotor Function by Preventing Endothelial Nitric Oxide Synthase Uncoupling Role in Atherosclerosis

期刊

CIRCULATION RESEARCH
卷 110, 期 3, 页码 439-449

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.111.253948

关键词

atherosclerosis; oxidative stress; uncoupling protein

资金

  1. Ministerio de Ciencia e Innovacion (MICINN) [SAF 2007-64335, SAF 2010-21871I, SAF 2008-04629, SAF 2010-16198]
  2. Instituto de Salud Carlos III (ISCIII) [RD06/0016/0016]
  3. FPI (MICINN)

向作者/读者索取更多资源

Rationale: Atherosclerotic lesions develop in regions of disturbed flow, whereas laminar flow protects from atherogenesis; however, the mechanisms involved are not completely elucidated. Integrins are mechanosensors of shear stress in endothelial cells, and integrin-linked kinase (ILK) is important for blood vessel integrity and cardiovascular development. Objectives: To explore the role of ILK in vascular function by studying conditionally ILK-deficient (cKO) mice and human atherosclerotic arteries. Results: ILK expression was detected in the endothelial cell layer of nonatherosclerotic vessels but was absent from the endothelium of atherosclerotic arteries. Live ultrasound imaging revealed that acetylcholine-mediated vasodilatation was impaired in cKO mice. These mice exhibited lowered agonist-induced nitric oxide synthase (NOS) activity and decreased cyclic guanosine monophosphate and nitrite production. ILK deletion caused endothelial NOS (eNOS) uncoupling, reflected in reduced tetrahydrobiopterin (BH4) levels, increased BH2 levels, decreased dihydrofolate reductase expression, and increased eNOS-dependent generation of superoxide accompanied by extensive vascular protein nitration. ILK reexpression prevented eNOS uncoupling in cKO cells, whereas superoxide formation was unaffected by ILK depletion in eNOS-KO cells, indicating eNOS as a primary source of superoxide anion. eNOS and ILK coimmunoprecipitated in aortic lysates from control animals, and eNOS-ILK-shock protein 90 interaction was detected in human normal mammary arteries but was absent from human atherosclerotic carotid arteries. eNOS-ILK interaction in endothelial cells was prevented by geldanamycin, suggesting heat shock protein 90 as a binding partner. Conclusions: Our results identify ILK as a regulatory partner of eNOS in vivo that prevents eNOS uncoupling, and suggest ILK as a therapeutic target for prevention of endothelial dysfunction related to shear stress-induced vascular diseases. (Circ Res. 2012;110:439-449.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据