4.7 Review

Regulation of the Inflammatory Response in Cardiac Repair

期刊

CIRCULATION RESEARCH
卷 110, 期 1, 页码 159-173

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.111.243162

关键词

resolution of inflammation; myocardial infarction; cytokine; chemokine; mononuclear cells

资金

  1. National Institutes of Health [R01 HL-76246, R01 HL-85440]
  2. Wilf Family Cardiovascular Research Institute

向作者/读者索取更多资源

Myocardial necrosis triggers an inflammatory reaction that clears the wound from dead cells and matrix debris, while activating reparative pathways necessary for scar formation. A growing body of evidence suggests that accentuation, prolongation, or expansion of the postinfarction inflammatory response results in worse remodeling and dysfunction following myocardial infarction. This review manuscript discusses the cellular effectors and endogenous molecular signals implicated in suppression and containment of the inflammatory response in the infarcted heart. Clearance of apoptotic neutrophils, recruitment of inhibitory monocyte subsets and regulatory T cells, macrophage differentiation and pericyte/endothelial interactions may play an active role in restraining postinfarction inflammation. Multiple molecular signals may be involved in suppressing the inflammatory cascade. Negative regulation of toll-like receptor signaling, downmodulation of cytokine responses, and termination of chemokine signals may be mediated through the concerted action of multiple suppressive pathways that prevent extension of injury and protect from adverse remodeling. Expression of soluble endogenous antagonists, decoy receptors, and posttranslational processing of bioactive molecules may limit cytokine and chemokine actions. Interleukin-10, members of the transforming growth factor-beta family, and proresolving lipid mediators (such as lipoxins, resolvins, and protectins) may suppress proinflammatory signaling. In human patients with myocardial infarction, defective suppression, and impaired resolution of inflammation may be important mechanisms in the pathogenesis of remodeling and in progression to heart failure. Understanding of inhibitory and proresolving signals in the infarcted heart and identification of patients with uncontrolled postinfarction inflammation and defective cardiac repair is needed to design novel therapeutic strategies. (Circ Res. 2012;110:159-173.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据