4.7 Article

Fetal Cells Traffic to Injured Maternal Myocardium and Undergo Cardiac Differentiation

期刊

CIRCULATION RESEARCH
卷 110, 期 1, 页码 82-93

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.111.249037

关键词

fetal stem cells; microchimerism; cardiomyocyte regeneration; cardiac repair; Cdx2

资金

  1. National Institutes of Health [R01-HL 088255]

向作者/读者索取更多资源

Rationale: Fetal cells enter the maternal circulation during pregnancy and may persist in maternal tissue for decades as microchimeras. Objective: Based on clinical observations of peripartum cardiomyopathy patients and the high rate of recovery they experience from heart failure, our objective was to determine whether fetal cells can migrate to the maternal heart and differentiate to cardiac cells. Methods and Results: We report that fetal cells selectively home to injured maternal hearts and undergo differentiation into diverse cardiac lineages. Using enhanced green fluorescent protein (eGFP)-tagged fetuses, we demonstrate engraftment of multipotent fetal cells in injury zones of maternal hearts. In vivo, eGFP+ fetal cells form endothelial cells, smooth muscle cells, and cardiomyocytes. In vitro, fetal cells isolated from maternal hearts recapitulate these differentiation pathways, additionally forming vascular tubes and beating cardiomyocytes in a fusion-independent manner; approximate to 40% of fetal cells in the maternal heart express Caudal-related homeobox2 (Cdx2), previously associated with trophoblast stem cells, thought to solely form placenta. Conclusions: Fetal maternal stem cell transfer appears to be a critical mechanism in the maternal response to cardiac injury. Furthermore, we have identified Cdx2 cells as a novel cell type for potential use in cardiovascular regenerative therapy. (Circ Res. 2012;110:82-93.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据