4.7 Article

Fibulin-4 Deficiency Results in Ascending Aortic Aneurysms A Potential Link Between Abnormal Smooth Muscle Cell Phenotype and Aneurysm Progression

期刊

CIRCULATION RESEARCH
卷 106, 期 3, 页码 583-592

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.109.207852

关键词

aneurysms; ECM; smooth muscle cells; mouse; elastic fibers

资金

  1. NIH [R01HL0711, R01AG028048]
  2. American Heart Association [0855200F]
  3. National Marfan Foundation
  4. Canadian Institutes of Health Research [MOP86713]

向作者/读者索取更多资源

Rationale: Loss of fibulin-4 during embryogenesis results in perinatal lethality because of aneurysm rupture, and defective elastic fiber assembly has been proposed as an underlying cause for the aneurysm phenotype. However, aneurysms are never seen in mice deficient for elastin, or for fibulin-5, which absence also leads to compromised elastic fibers. Objective: We sought to determine the mechanism of aneurysm development in the absence of fibulin-4 and establish the role of fibulin-4 in aortic development. Methods and Results: We generated germline and smooth muscle cell (SMC)-specific deletion of the fibulin-4 gene in mice (Fbln4(GKO) and Fbln4(SMKO), respectively). Fbln4(GKO) and Fbln4(SMKO) aortic walls fail to fully differentiate, exhibiting reduced expression of SM-specific contractile genes and focal proliferation of SMCs accompanied by degenerative changes of the medial wall. Marked upregulation of extracellular signal-regulated kinase 1/2 signaling pathway was observed in the aneurysmal wall of Fbln4(GKO) and Fbln4(SMKO) mice and both mutants developed aneurysm predominantly in the ascending thoracic aorta. In vitro, Fbln4(GKO) SMCs exhibit an immature SMC phenotype with a marked reduction of SM-myosin heavy chain and increased proliferative capacity. Conclusions: The vascular phenotype in Fbln4 mutant mice is remarkably similar to a subset of human thoracic aortic aneurysms caused by mutations in SMC contractile genes. Our study provides a potential link between the intrinsic properties of SMCs and aneurysm progression in vivo and supports the dual role of fibulin-4 in the formation of elastic fibers as well as terminal differentiation and maturation of SMCs in the aortic wall. (Circ Res. 2010;106:583-592.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据