4.7 Article

Nonsense-Mediated mRNA Decay and Ubiquitin-Proteasome System Regulate Cardiac Myosin-Binding Protein C Mutant Levels in Cardiomyopathic Mice

期刊

CIRCULATION RESEARCH
卷 105, 期 3, 页码 239-U89

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.109.201251

关键词

cardiomyopathy; hypertrophic cardiomyopathy; mRNA stability; transgenic mice; ubiquitin

资金

  1. European Union [EXT-014051]
  2. French Research Government Department [ACI-191]
  3. Deutsche Forschungsgemeinschaft [FOR-604-CA 618/1-2]
  4. Institut de la Sante et de la Recherche Medicale [PNRMC-A04048DS]
  5. Association Francaise contre les Myopathies [AFM-9471]

向作者/读者索取更多资源

Rationale: Mutations in the MYBPC3 gene encoding cardiac myosin-binding protein (cMyBP)-C are frequent causes of hypertrophic cardiomyopathy, but the mechanisms leading from mutations to disease remain elusive. Objective: The goal of the present study was therefore to gain insights into the mechanisms controlling the expression of MYBPC3 mutations. Methods and Results: We developed a cMyBP-C knock-in mouse carrying a point mutation. The level of total cMyBP-C mRNAs was 50% and 80% lower in heterozygotes and homozygotes, respectively. Surprisingly, the single G>A transition on the last nucleotide of exon 6 resulted in 3 different mutant mRNAs: missense (exchange of G for A), nonsense (exon skipping, frameshift, and premature stop codon) and deletion/insertion (as nonsense but with additional partial retention of downstream intron, restoring of the reading frame, and almost full-length protein). Inhibition of nonsense-mediated mRNA decay in cultured cardiac myocytes or in vivo with emetine or cycloheximide increased the level of nonsense mRNAs severalfold but not of the other mRNAs. By using sequential protein fractionation and a new antibody directed against novel amino acids produced by the frameshift, we showed that inhibition of the proteasome with epoxomicin via osmotic minipumps increased the level of (near) full-length mutants but not of truncated proteins. Homozygotes exhibited myocyte and left ventricular hypertrophy, reduced fractional shortening, and interstitial fibrosis; heterozygotes had no major phenotype. Conclusions: These data reveal (1) an unanticipated complexity of the expression of a single point mutation in the whole animal and (2) the involvement of both nonsense-mediated mRNA decay and the ubiquitin-proteasome system in lowering the level of mutant proteins. (Circ Res. 2009; 105: 239-248.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据