4.7 Article

Constitutive phosphodiesterase activity restricts spontaneous beating rate of cardiac pacemaker cells by suppressing local Ca2+ releases

期刊

CIRCULATION RESEARCH
卷 102, 期 7, 页码 761-769

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.107.161679

关键词

sinoatrial node; phosphodiesterase; ryanodine receptors; local Ca2+ release

资金

  1. Intramural NIH HHS Funding Source: Medline

向作者/读者索取更多资源

Spontaneous beating of rabbit sinoatrial node cells (SANCs) is controlled by cAMP-mediated, protein kinase A-dependent local subsarcolemmal ryanodine receptor Ca2+ releases (LCRs). LCRs activated an inward Na+/Ca2+ exchange current that increases the terminal diastolic depolarization rate and, therefore, the spontaneous SANC beating rate. Basal cAMP in SANCs is elevated, suggesting that cAMP degradation by phosphodiesterases (PDEs) may be low. Surprisingly, total suppression of PDE activity with a broad-spectrum PDE inhibitor, 3'-isobutylmethylxanthine (IBMX), produced a 9-fold increase in the cAMP level, doubled cAMP-mediated, protein kinase A-dependent phospholamban phosphorylation, and increased SANC firing rate by approximate to 55%, indicating a high basal activity of PDEs in SANCs. A comparison of specific PDE1 to -5 inhibitors revealed that the specific PDE3 inhibitor, milrinone, accelerated spontaneous firing by approximate to 47% (effects of others were minor) and increased amplitude of L-type Ca2+ current (I-Ca,I-L) by approximate to 46%, indicating that PDE3 was the major constitutively active PDE in the basal state. PDE-dependent control of the spontaneous SANC firing was critically dependent on subsarcolemmal LCRs, ie, PDE inhibition increased LCR amplitude and size and decreased LCR period, leading to earlier and augmented LCR Ca2+ release, Na+/Ca2+ exchange current, and an increase in the firing rate. When ryanodine receptors were disabled by ryanodine, neither IBMX nor milrinone was able to amplify LCRs, accelerate diastolic depolarization rate, or increase the SANC firing rate, despite preserved PDE inhibition-induced augmentation of I-Ca,I-L amplitude. Thus, basal constitutive PDE activation provides a novel and powerful mechanism to decrease cAMP, limit cAMP-mediated, protein kinase A-dependent increase of diastolic ryanodine receptor Ca2+ release, and restrict the spontaneous SANC beating rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据