4.8 Article

Interactions Between Vascular Wall and Perivascular Adipose Tissue Reveal Novel Roles for Adiponectin in the Regulation of Endothelial Nitric Oxide Synthase Function in Human Vessels

期刊

CIRCULATION
卷 127, 期 22, 页码 2209-+

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.112.001133

关键词

5,6,7,8-tetrahydrobiopterin; adiponectin; atherosclerosis; endothelium; nitric oxide synthase type III; superoxides

资金

  1. British Heart Foundation (BHF) [FS/11/66/28855]
  2. Leducq Transatlantic Network of Excellence
  3. BHF Center of Research Excellence, Oxford [RE/08/004]
  4. British Heart Foundation [RG/12/5/29576, RG/11/15/29375, FS/11/66/28855] Funding Source: researchfish
  5. Medical Research Council [1239410] Funding Source: researchfish
  6. National Institute for Health Research [NF-SI-0508-10247] Funding Source: researchfish

向作者/读者索取更多资源

Background-Adiponectin is an adipokine with potentially important roles in human cardiovascular disease states. We studied the role of adiponectin in the cross-talk between adipose tissue and vascular redox state in patients with atherosclerosis. Methods and Results-The study included 677 patients undergoing coronary artery bypass graft surgery. Endothelial function was evaluated by flow-mediated dilation of the brachial artery in vivo and by vasomotor studies in saphenous vein segments ex vivo. Vascular superoxide (O-2(-)) and endothelial nitric oxide synthase (eNOS) uncoupling were quantified in saphenous vein and internal mammary artery segments. Local adiponectin gene expression and ex vivo release were quantified in perivascular (saphenous vein and internal mammary artery) subcutaneous and mesothoracic adipose tissue from 248 patients. Circulating adiponectin was independently associated with nitric oxide bioavailability and O-2(-) production/eNOS uncoupling in both arteries and veins. These findings were supported by a similar association between functional polymorphisms in the adiponectin gene and vascular redox state. In contrast, local adiponectin gene expression/release in perivascular adipose tissue was positively correlated with O-2(-) and eNOS uncoupling in the underlying vessels. In ex vivo experiments with human saphenous veins and internal mammary arteries, adiponectin induced Akt-mediated eNOS phosphorylation and increased tetrahydrobiopterin bioavailability, improving eNOS coupling. In ex vivo experiments with human saphenous veins/internal mammary arteries and adipose tissue, we demonstrated that peroxidation products produced in the vascular wall (ie, 4-hydroxynonenal) upregulate adiponectin gene expression in perivascular adipose tissue via a peroxisome proliferator-activated receptor-gamma-dependent mechanism. Conclusions-We demonstrate for the first time that adiponectin improves the redox state in human vessels by restoring eNOS coupling, and we identify a novel role of vascular oxidative stress in the regulation of adiponectin expression in human perivascular adipose tissue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据