4.8 Article

Flow-Dependent Regulation of Kruppel-Like Factor 2 Is Mediated by MicroRNA-92a

期刊

CIRCULATION
卷 124, 期 5, 页码 633-U231

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.110.005108

关键词

endothelial cells; KLF2; miRNA; shear stress; vasodilation

资金

  1. National Institutes of Health [HL89940, HL106579, HL076686]
  2. Ibercaja Research Fellowship
  3. Red Heracles de Investigacion Cardiovascular
  4. Research Foundation of the Hospital Clinico Universitario de Valencia (Spain)
  5. Howard Hughes Medical Institute
  6. American Medical Association
  7. Taiwan National Science Council [NSC-99-2911-I-009-101]

向作者/读者索取更多资源

Background-Upregulated by atheroprotective flow, the transcription factor Kruppel-like factor 2 (KLF2) is crucial for maintaining endothelial function. MicroRNAs (miRNAs) are noncoding small RNAs that regulate gene expression at the posttranscriptional level. We examined the role of miRNAs, particularly miR-92a, in the atheroprotective flow-regulated KLF2. Methods and Results-Dicer knockdown increased the level of KLF2 mRNA in human umbilical vein endothelial cells, suggesting that KLF2 is regulated by miRNA. In silico analysis predicted that miR-92a could bind to the 3' untranslated region of KLF2 mRNA. Overexpression of miR-92a decreased the expression of KLF2 and the KLF2-regulated endothelial nitric oxide synthase and thrombomodulin at mRNA and protein levels. A complementary finding is that miR-92a inhibitor increased the mRNA and protein expression of KLF2, endothelial nitric oxide synthase, and thrombomodulin. Subsequent studies revealed that atheroprotective laminar flow downregulated the level of miR-92a precursor to induce KLF2, and the level of this flow-induced KLF2 was reduced by miR-92a precursor. Furthermore, miR-92a level was lower in human umbilical vein endothelial cells exposed to the atheroprotective pulsatile shear flow than under atheroprone oscillatory shear flow. Anti-Ago1/2 immunoprecipitation coupled with real-time polymerase chain reaction revealed that pulsatile shear flow decreased the functional targeting of miR-92a precursor/KLF2 mRNA in human umbilical vein endothelial cells. Consistent with these findings, mouse carotid arteries receiving miR-92a precursor exhibited impaired vasodilatory response to flow. Conclusions-Atheroprotective flow patterns decrease the level of miR-92a, which in turn increases KLF2 expression to maintain endothelial homeostasis. (Circulation. 2011;124:633-641.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据