4.8 Article

S100A9 Differentially Modifies Phenotypic States of Neutrophils, Macrophages, and Dendritic Cells Implications for Atherosclerosis and Adipose Tissue Inflammation

期刊

CIRCULATION
卷 123, 期 11, 页码 1216-1226

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.110.985523

关键词

atherosclerosis; immunology; macrophage; S100 proteins

资金

  1. National Institutes of Health [HL062887, HL092969, HL097365, HL079382, AI073441, HL030086]
  2. Interdisziplinares Zentrum fur Klinische Forschung
  3. University of Muenster [Ker3/086/ 04]
  4. Deutsche Forschungsgemeinschaft [KE 820/6-1, KE 820/2-4]
  5. Cardiovascular Postdoctoral Training Grant [T32 HL07828]

向作者/读者索取更多资源

Background-S100A9 is constitutively expressed in neutrophils, dendritic cells, and monocytes; is associated with acute and chronic inflammatory conditions; and is implicated in obesity and cardiovascular disease in humans. Most of the constitutively secreted S100A9 is derived from myeloid cells. A recent report demonstrated that mice deficient in S100A9 exhibit reduced atherosclerosis compared with controls and suggested that this effect was due in large part to loss of S100A9 in bone marrow-derived cells. Methods and Results-To directly investigate the role of bone marrow-derived S100A9 in atherosclerosis and insulin resistance in mice, low-density lipoprotein receptor-deficient, S100A9-deficient bone marrow chimeras were generated. Neither atherosclerosis nor insulin resistance was reduced in S100A9-deficient chimeras fed a diet rich in fat and carbohydrates. To investigate the reason for this lack of effect, myeloid cells were isolated from the peritoneal cavity or bone marrow. S100A9-deficient neutrophils exhibited a reduced secretion of cytokines in response to toll-like receptor-4 stimulation. In striking contrast, S100A9-deficient dendritic cells showed an exacerbated release of cytokines after toll-like receptor stimulation. Macrophages rapidly lost S100A9 expression during maturation; hence, S100A9 deficiency did not affect the inflammatory status of macrophages. Conclusions-S100A9 differentially modifies phenotypic states of neutrophils, macrophages, and dendritic cells. The effect of S100A9 deficiency on atherosclerosis and other inflammatory diseases is therefore predicted to depend on the relative contribution of these cell types at different stages of disease progression. Furthermore, S100A9 expression in nonmyeloid cells is likely to contribute to atherosclerosis. (Circulation. 2011; 123: 1216-1226.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据