4.8 Article

Sympathoexcitation by Oxidative Stress in the Brain Mediates Arterial Pressure Elevation in Obesity-Induced Hypertension

期刊

CIRCULATION
卷 119, 期 7, 页码 978-U102

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.108.824730

关键词

brain; hypertension; obesity; oxidative stress; sympathetic nervous system

资金

  1. Daiichi Sankyo Co Ltd

向作者/读者索取更多资源

Background-Obesity is one of the major risk factors for cardiovascular disease and is often associated with increased oxidative stress and sympathoexcitation. We have already suggested that increased oxidative stress in the brain modulates the sympathetic regulation of arterial pressure in salt-sensitive hypertension, which is often associated with obesity. The present study was performed to determine whether oxidative stress could mediate central sympathoexcitation in the initial stage of obesity-induced hypertension. Methods and Results-Four-week-old male Sprague-Dawley rats were fed a high-fat (45% kcal as fat) or low-fat (10% kcal as fat) diet for 6 weeks. Fat loading elicited hypertension and sympathoexcitation, along with visceral obesity. In urethane-anesthetized and artificially ventilated rats, arterial pressure and renal sympathetic nerve activity decreased in a dose-dependent fashion when 53 or 105 mu mol/kg tempol, a membrane-permeable superoxide dismutase mimetic, was infused into the lateral cerebral ventricle. Central tempol reduced arterial pressure and renal sympathetic nerve activity to a significantly greater extent in high-fat diet-fed hypertensive rats than in low-fat diet-fed normotensive rats. Intracerebroventricular apocynin or diphenyleneiodonium, a reduced NADPH oxidase inhibitor, also elicited markedly greater reductions in arterial pressure and renal sympathetic nerve activity in the high-fat diet-fed rats. In addition, fat loading increased NADPH oxidase activity and NADPH oxidase subunit p22(phox), p47(phox), and gp91(phox) mRNA expression in the hypothalamus. Conclusions-In obesity-induced hypertension, increased oxidative stress in the brain, possibly via activation of NADPH oxidase, may contribute to the progression of hypertension through central sympathoexcitation. (Circulation. 2009; 119: 978-986.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据