4.4 Article Proceedings Paper

Enzyme complexity in intermediary metabolism

期刊

JOURNAL OF INHERITED METABOLIC DISEASE
卷 38, 期 4, 页码 721-727

出版社

SPRINGER
DOI: 10.1007/s10545-015-9821-0

关键词

-

资金

  1. FNRS (Fonds de la Recherche Scientifique)
  2. Welbio (Walloon Region)
  3. Interuniversity Attraction Poles Program [P7/43]
  4. European Union [276814]

向作者/读者索取更多资源

A good appraisal of the function of enzymes is essential for the understanding of inborn errors of metabolism. However, it is clear now that the 'one gene, one enzyme, one catalytic function' rule oversimplifies the actual situation. Genes often encode several related proteins, which may differ in their subcellular localisation, regulation or function. Furthermore, enzymes often show several catalytic activities. In some cases, this is because they are multifunctional, possessing two or more different active sites that catalyse different, physiologically related reactions. In enzymes with broad specificity or in multispecificity enzymes, a single type of catalytic site performs the same reaction on different physiological substrates at similar rates. Enzymes that act physiologically in only one reaction often show nonetheless substrate promiscuity: they act at low rates on compounds that resemble their physiological substrate(s), thus forming non-classical metabolites, which are in some cases eliminated by metabolite repair. In addition to their catalytic role, enzymes may have moonlighting functions, i.e. non-catalytic functions that are most often not related with their catalytic activity. Deficiency in such functions may participate in the phenotype of inborn errors of metabolism. Evolution has also made that some enzymes have lost their catalytic activity to become allosteric proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据