4.1 Article

A bayesian approach to map QTLs using reversible jump MCMC

期刊

CIENCIA E AGROTECNOLOGIA
卷 33, 期 4, 页码 1061-1070

出版社

UNIV FEDERAL LAVRAS-UFLA
DOI: 10.1590/S1413-70542009000400017

关键词

Mapping QTLs; gibbs-sampler; metropolis-hastings; reversible jump MCMC

向作者/读者索取更多资源

The use of Bayesian methodology in genetic applications has grown increasingly popular, in particular in the analysis of quantitative trait loci (QTL) for studies using molecular markers. In such analyses the objectives are mapping QTLs, estimating their locations in the genome and their genotypic effects (additive, dominance, and epistatic). The Bayesian approach proceeds by setting up a likelihood function for the phenotype and assigning prior distributions to all unknown quantities in the model (number, chromosome, locus, and genetic effects of QTL). These induce a posterior distribution of the unknown quantities that contains all of the available information for inference of the genetic architecture of the trait. Bayesian mapping methods can treat the unknown number of QTL as a random variable, which has several advantages but results in the complication of varying the dimension of the model space. The reversible jump MCMC algorithm (MCMC-RJ), proposed by Green (1995), offers a powerful and general approach to exploring posterior distributions in this setting. The method was evaluated by analyzing simulated data in WinQTLCart, attributing different priors distributions on the QTL numbers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据