4.5 Article

Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10295-015-1591-z

关键词

Phenylalanine; Tyrosine; Phenylalanine 4-hydroxylase; Metabolic engineering

资金

  1. College of Engineering, University of Georgia, Athens
  2. American Heart Association [11SDG6960001]

向作者/读者索取更多资源

Tyrosine is a proteinogenic aromatic amino acid that is often used as a supplement of food and animal feed, as well as a (bio-)synthetic precursor to various pharmaceutically or industrially important molecules. Extensive metabolic engineering efforts have been made towards the efficient and cost-effective microbial production of tyrosine. Conventional strategies usually focus on eliminating intrinsic feedback inhibition and redirecting carbon flux into the shikimate pathway. In this study, we found that continuous conversion of phenylalanine into tyrosine by the action of tetrahydromonapterin (MH4)-utilizing phenylalanine 4-hydroxylase (P4H) can bypass the feedback inhibition in Escherichia coli, leading to tyrosine accumulation in the cultures. First, expression of the P4H from Xanthomonas campestris in combination with an MH4 recycling system in wild-type E. coli allowed the strain to accumulate tyrosine at 262 mg/L. On this basis, enhanced expression of the key enzymes associated with the shikimate pathway and the MH4 biosynthetic pathway resulted in the elevation of tyrosine production up to 401 mg/L in shake flasks. This work demonstrated a novel approach to tyrosine production and verified the possibility to alleviate feedback inhibition by creating a phenylalanine sink.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据