4.6 Article

Norepinephrine Controls Effector T Cell Differentiation through β2-Adrenergic Receptor-Mediated Inhibition of NF-κB and AP-1 in Dendritic Cells

期刊

JOURNAL OF IMMUNOLOGY
卷 196, 期 2, 页码 637-644

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1501206

关键词

-

资金

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [08/58564-9]
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [475000/2010-2, 246252/2012-0]

向作者/读者索取更多资源

Despite accumulating evidence indicating that neurotransmitters released by the sympathetic nervous system can modulate the activity of innate immune cells, we still know very little about how norepinephrine impacts signaling pathways in dendritic cells (DC) and the consequence of that in DC-driven T cell differentiation. In this article, we demonstrate that beta(2)-adrenergic receptor (beta(2)AR) activation in LPS-stimulated DC does not impair their ability to promote T cell proliferation; however, it diminishes IL-12p70 secretion, leading to a shift in the IL-12p70/IL-23 ratio. Although beta(2)AR stimulation in DC induces protein kinase A-dependent cAMP-responsive element-binding protein phosphorylation, the effect of changing the profile of cytokines produced upon LPS challenge occurs in a protein kinase A-independent manner and, rather, is associated with inhibition of the NF-kappa B and AP-1 signaling pathways. Moreover, as a consequence of the inverted IL-12p70/IL-23 ratio following beta(2)AR stimulation, LPS-stimulated DC promoted the generation of CD4(+) T cells that, upon TCR engagement, produced lower amounts of IFN-gamma and higher levels of IL-17. These findings provide new insights into molecular and cellular mechanisms by which beta(2)AR stimulation in murine DC can influence the generation of adaptive immune responses and may explain some aspects of how sympathetic nervous system activity can modulate immune function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据