4.6 Article

Differential Interaction of the Staphylococcal Toxins Panton-Valentine Leukocidin and gamma-Hemolysin CB with Human C5a Receptors

期刊

JOURNAL OF IMMUNOLOGY
卷 195, 期 3, 页码 1034-1043

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1500604

关键词

-

资金

  1. European Commission [222718]
  2. Agence Nationale de la Recherche
  3. Foundation Finovi
  4. National Institute of Allergy and Infectious Diseases/National Institutes of Health [HL051366]
  5. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL051366] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Staphylococcus aureus is well adapted to the human host. Evasion of the host phagocyte response is critical for successful infection. The staphylococcal bicomponent pore-forming toxins Panton-Valentine leukocidin LukSF-PV (PVL) and gamma-hemolysin CB (HlgCB) target human phagocytes through interaction with the complement receptors C5aR1 and C5aR2. Currently, the apparent redundancy of both toxins cannot be adequately addressed in experimental models of infection because mice are resistant to PVL and HlgCB. The molecular basis for species specificity of the two toxins in animal models is not completely understood. We show that PVL and HlgCB feature distinct activity toward neutrophils of different mammalian species, where activity of PVL is found to be restricted to fewer species than that of HlgCB. Overexpression of various mammalian C5a receptors in HEK cells confirms that cytotoxicity toward neutrophils is driven by species-specific interactions of the toxins with C5aR1. By taking advantage of the species-specific engagement of the toxins with their receptors, we demonstrate that PVL and HlgCB differentially interact with human C5aR1 and C5aR2. In addition, binding studies illustrate that different parts of the receptor are involved in the initial binding of the toxin and the subsequent formation of lytic pores. These findings allow a better understanding of the molecular mechanism of pore formation. Finally, we show that the toxicity of PVL, but not of HlgCB, is neutralized by various C5aR1 antagonists. This study offers directions for the development of improved preclinical models for infection, as well as for the design of drugs antagonizing leukocidin toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据