4.5 Article

The Canadian Land Data Assimilation System (CaLDAS): Description and Synthetic Evaluation Study

期刊

JOURNAL OF HYDROMETEOROLOGY
卷 16, 期 3, 页码 1293-1314

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JHM-D-14-0089.1

关键词

-

资金

  1. Canadian Space Agency through the Government Related Initiatives Program

向作者/读者索取更多资源

The Canadian Land Data Assimilation System (CaLDAS) has been developed at the Meteorological Research Division of Environment Canada (EC) to better represent the land surface initial states in environmental prediction and assimilation systems. CaLDAS is built around an external land surface modeling system and uses the ensemble Kalman filter (EnKF) methodology. A unique feature of CaLDAS is the use of improved precipitation forcing through the assimilation of precipitation observations. An ensemble of precipitation analyses is generated by combining numerical weather prediction (NWP) model precipitation forecasts with precipitation observations. Spatial phasing errors to the NWP first-guess precipitation forecasts are more effective than perturbations to the precipitation observations in decreasing (increasing) the exceedance ratio (uncertainty ratio) scores and generating flatter, more reliable ranked histograms. CaLDAS has been configured to assimilate L-band microwave brightness temperature TB by coupling the land surface model with a microwave radiative transfer model. A continental-scale synthetic experiment assimilating passive L-band TBs for an entire warm season is performed over North America. Ensemble metric scores are used to quantify the impact of different atmospheric forcing uncertainties on soil moisture and TB ensemble spread. The use of an ensemble of precipitation analyses, generated by assimilating precipitation observations, as forcing combined with the assimilation of L-band TBs gave rise to the largest improvements in superficial soil moisture scores and to a more rapid reduction of the root-zone soil moisture errors. Innovation diagnostics show that the EnKF is able to maintain a sufficient forecast error spread through time, while soil moisture estimation error improvements with increasing ensemble size were limited.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据