4.7 Article

Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging

期刊

JOURNAL OF HYDROLOGY
卷 528, 期 -, 页码 52-62

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2015.06.007

关键词

Bayesian model averaging; Artificial neural network; Uncertainty; Ensemble method

资金

  1. United States Geological Survey [G10AP00136]

向作者/读者索取更多资源

This study adopts a hierarchical Bayesian model averaging (HBMA) method to analyze prediction uncertainty resulted from uncertain components in artificial neural networks (ANNs). The HBMA is an ensemble method for prediction and is used to segregate the sources of model structure uncertainty in ANNs and investigate their variance contributions to total prediction variance. Specific sources of uncertainty considered in ANNs include the uncertainty in neural network weights and biases (model parameters), uncertainty of selecting an activation function for the hidden layer, and uncertainty of selecting a number of hidden layer nodes (model structure). Prediction uncertainties due to uncertain inputs and ANN model parameters are represented by within-model variance. Prediction uncertainties due to uncertain activation function and uncertain number of nodes for the hidden layer are represented by between-model variance. The method is demonstrated through a study that employs ANNs to predict fluoride concentration in the aquifers of the Maku area, Azarbaijan, Iran. The results show that uncertain inputs and ANN model parameters produces the most prediction variance, followed by prediction variances from uncertain number of hidden layer nodes and uncertain activation function. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据