4.8 Article

Excellent Performances of Dealuminated H-Beta Zeolites from Organotemplate-Free Synthesis in Conversion of Biomass-derived 2,5-Dimethylfuran to Renewable p-Xylene

期刊

CHEMSUSCHEM
卷 11, 期 21, 页码 3803-3811

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201801504

关键词

acidity; cycloaddition; heterogeneous catalysis; sustainable chemistry; zeolites

资金

  1. National Natural Science Foundation of China [21673027, 21373035]
  2. Fundamental Research Funds for the Central Universities in China [DUT16RC(3)002, DUT17TD04]
  3. Program for Liaoning Innovative Research Team in University [LT2016001]
  4. International Network of Centers of Excellence (INCOE)

向作者/读者索取更多资源

Direct synthesis of renewable p-xylene (PX) by cycloaddition of biomass-derived 2,5-dimethylfuran (2,5-DMF) and ethylene was achieved over Al-rich H-beta zeolites synthesized by an organotemplate-free approach and their dealuminated counterparts with different Si/Al ratios. Among them, H-beta zeolite with an Si/Al ratio of 22, obtained from an Al-rich parent by dealumination, was found to be an excellent catalyst for the synthesis of PX. A PX yield of 97 % and 2,5-DMF conversion of 99 % were obtained under optimized conditions. These results are even better than those of a commercial H-beta zeolite prepared using a organotemplate synthesis with a similar Si/Al ratio of 19. The excellent performance of the H-beta zeolite with Si/Al ratio of 22 is closely related to its acidity and porous structure. A moderate Bronsted/Lewis acid ratio can improve the conversion of 2,5-DMF to as high as 99 %. Furthermore, dealuminated H-beta zeolite has a secondary pore system that facilitates product diffusion, which increases the selectivity to PX. In addition, this catalyst shows better regeneration. After five successive regeneration cycles, the yield of PX was still as high as 85 % without obvious dealumination. This work provides a deeper understanding of the more general Diels-Alder cycloaddition of furan-based feedstocks and olefins and significantly improves the potential for the synthesis of chemicals from lignocellulosic biomass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据