4.7 Article

A new approach for continuous estimation of baseflow using discrete water quality data: Method description and comparison with baseflow estimates from two existing approaches

期刊

JOURNAL OF HYDROLOGY
卷 522, 期 -, 页码 203-210

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2014.12.039

关键词

Basel low; Conductivity mass balance; Specific conductance; Hydrograph separation; Groundwater

资金

  1. U.S. Geological Survey WaterSMART Program
  2. National Water Quality Assessment Program

向作者/读者索取更多资源

Understanding how watershed characteristics and climate influence the baseflow component of stream discharge is a topic of interest to both the scientific and water management communities. Therefore, the development of baseflow estimation methods is a topic of active research. Previous studies have demonstrated that graphical hydrograph separation (GHS) and conductivity mass balance (CMB) methods can be applied to stream discharge data to estimate daily baseflow. While CMB is generally considered to be a more objective approach than GHS, its application across broad spatial scales is limited by a lack of high frequency specific conductance (SC) data. We propose a new method that uses discrete SC data, which are widely available, to estimate baseflow at a daily time step using the CMB method. The proposed approach involves the development of regression models that relate discrete SC concentrations to stream discharge and time. Regression-derived CMB baseflow estimates were more similar to baseflow estimates obtained using a CMB approach with measured high frequency SC data than were the GHS baseflow estimates at twelve snowmelt dominated streams and rivers. There was a near perfect fit between the regression-derived and measured CMB baseflow estimates at sites where the regression models were able to accurately predict daily SC concentrations. We propose that the regression-derived approach could be applied to estimate baseflow at large numbers of sites, thereby enabling future investigations of watershed and climatic characteristics that influence the baseflow component of stream discharge across large spatial scales. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据