4.5 Article

Graphene Oxides Prepared by Hummers', Hofmann's, and Staudenmaier's Methods: Dramatic Influences on Heavy-Metal-Ion Adsorption

期刊

CHEMPHYSCHEM
卷 15, 期 14, 页码 2922-2929

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.201402279

关键词

environmental chemistry; graphene oxide; heavy metals; sorbent; water chemistry

资金

  1. National Research Foundation Singapore under its National Research Foundation (NRF) Environmental and Water Technologies (EWT)
  2. Ministry of Education, Singapore [MOE2013-T2-1-056, ARC281735/13]

向作者/读者索取更多资源

Graphene oxide (GO), an up-and-coming material rich in oxygenated groups, shows much promise in pollution management. GO is synthesised using several synthetic routes, and the adsorption behaviour of GO is investigated to establish its ability to remove the heavy-metal pollutants of lead and cadmium ions. The GO is synthesised by Hummers' (HU), Hofmann's (HO) and Staudenmaier's (ST) methodologies. Characterisation of GO is performed before and after adsorption experiments to investigate the structure-function relationship by using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy coupled with elemental detection spectroscopy is used to investigate morphological changes and heavy-metal content in the adsorbed GO. The filtrate, collected after adsorption, is analysed by inductively coupled plasma mass spectrometry, through which the efficiency and adsorption capacity of each GO for heavy-metal-ion removal is obtained. Spectroscopic analysis and characterisation reveal that the three types of GO have different compositions of oxygenated carbon functionalities. The trend in the affinity towards both Pb-II and Cd-II is HU GO> HO GO> ST GO. A direct correlation between the number of carboxyl groups present and the amount of heavy-metal ions adsorbed is established. The highest efficiency and highest adsorption capacity of heavy-metal ions is achieved with HU, in which the relative abundance of carboxyl groups is highest. The embedded systematic study reveals that carboxyl groups are the principal functionality responsible for heavy-metal-ion removal in GO. The choice of synthesis methodology for GO has a profound influence on heavy-metal-ion adsorption. A further enrichment of the carboxyl groups in GO will serve to enhance the role of GO as an adsorbent for environmental clean-up.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据