4.5 Article

Fluorine Substitution Effects on Flexibility and Tunneling Pathways: The Rotational Spectrum of 2-Fluorobenzylamine

期刊

CHEMPHYSCHEM
卷 14, 期 9, 页码 1943-1950

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.201300121

关键词

ab initio calculations; conformation analysis; fluorine; hydrogen bonds; rotational spectroscopy

资金

  1. University of Bologna
  2. MIUR [356KJX4SN_001]

向作者/读者索取更多资源

The effect of ring fluorination on the structural and dynamical properties of the flexible model molecule 2-fluorobenzylamine has been studied by rotational spectroscopy in free-jet expansion and quantum chemical methods. The complete potential energy surface originating from the flexibility of the aminic side chain has been calculated at the B3LYP/6-311++G** level of theory and the stable geometries were also characterized with MP2/6-311++G**. The rotational spectra show the presence of two of the predicted four stable conformers: the global minimum (I), in which the side chain's dihedral angle with the phenyl plane is almost perpendicular, is stabilized by an intramolecular hydrogen bond between the fluorine atom and one hydrogen of the aminic group; and a second conformer II (EII-EI approximate to 5 kJmol-1) in which the dihedral angle is smaller and the amino group points towards the aromatic ortho hydrogen atom. This conformation is characterized by a tunneling motion between two equivalent positions of the amino group with respect to the phenyl plane, which splits the rotational transition. The ortho fluorination increases, with respect to benzylamine, the tunneling splitting of this motion by four orders of magnitude. The motion is analyzed with a one-dimensional flexible model, which allows estimation of the energy barrier for the transition state as approximately 8.0 kJmol-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据