4.5 Article

Dramatic Fluorescence Enhancement of Bare Carbon Dots through Facile Reduction Chemistry

期刊

CHEMPHYSCHEM
卷 13, 期 15, 页码 3549-3555

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.201200018

关键词

carbon dots; fluorescence enhancement; reduction; semiconductors; surface chemistry

资金

  1. National Science Foundation of China [21090354, 21174137]

向作者/读者索取更多资源

Reduction of bare carbon dots (CDs) in aqueous NaBH4 solution is a facile and effective approach to enhance their fluorescence without any surface coverage. CDs are treated with dilute aqueous NaBH4 solutions, enhancing their quantum yields (QYs) successfully from 1.6?% to 16?% which is comparable to semiconductive QDs in aqueous environments. If pristine CDs are treated hydrothermally prior to reduction by NaBH4, QYs reach 40.5?%. This value is among the highest QYs reported for bare CDs in the literature. The approach to enhance fluorescence through chemical reduction is generally applicable to other kinds of CDs synthesized by various methods. Alteration of the chemical structure of the CDs by NaBH4-reduction is analyzed by 13C NMR, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, which demonstrate that the carbonyl group content is decreased after NaBH4-reduction, whereas the number of sp3-type carbon defects is increased. The valence-band maxima (VBM) near the surface related to the surface energy bands of the CDs are estimated by XPS. VBM data show a semiconducting layer on the surface of the CDs, and the VBM of the CDs decrease with increasing NaBH4-reduction time. The layered graphite structures in the cores of the CDs are clearly observed by transmission electron microscopy (TEM). CDs could perhaps be regarded as semiconductive surface defect layers formed by chemical erosion over conductive graphite cores. Chemical reduction by NaBH4 changes the surface-energy bands of the CDs, thus, enhances their fluorescence. The fluorescence properties of aqueous NaBH4-reduced CDs are also studied for possible biological applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据